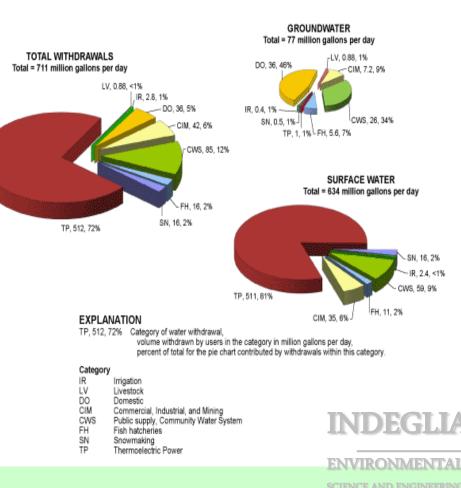
JONES & BEACH ENGINEERS INC.

85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 603.772.4746 - JonesandBeach.com

Town of Rye Septic Social June 22, 2016 Christopher Albert



We are here to get you Pumped Out

Uses of Water

- Agricultural
- Commercial/Industrial
- Ecological
- Municipal
 - Domestic (Residential)
 - Recreational
 - Institutional

Water withdrawals in New Hampshire by category of use and source in 2005 (values may not add to totals because of independent rounding)

http://nh.water.usgs.gov/project/nhvtwateruse/nhproj.htm

SOURCE:

Onsite Septic Systems –

Northeast – 19 percentage of households have an onsite septic system. Vermont >55% Maine > 51% Massachusetts < 27%

New Hampshire > 49%

SEPTIC SYSTEMS

Over 1 trillion gallons of septic tank effluent disposed from individual septic systems per year.

Septic systems performance depends upon

- Location on the landscape
- Design
- Constructed
- Used or Abused Homeowner
- Maintained / Serviced
- Technology

SEPTIC SYSTEMS / HEALTH ISSUES

Diseases and infections can be transferred by failing septic systems.

Most infect the stomach and intestinal tract illnesses'

Less than 1% of the ground and fresh water is useable for drinking water.

can efficiently remove disease-causing bacteria and prevents the spread of disease.

Dissolved Oxygen (DO)

one of <u>the most important</u> water chemistry compounds!!

maintaining aquatic life aesthetic value limiting factor for many chemical processes determines chemical pathways (aerobic/anaerobic) highly temperature-dependent

dissolved oxygen is a critical part of any water quality management plan

ENVIRONMENTAL

Eutrophied Water Bodies

SOURCE: www.lifeinfreshwater.org.uk; www.followgreenliving.com; www.sevenhillslake.org

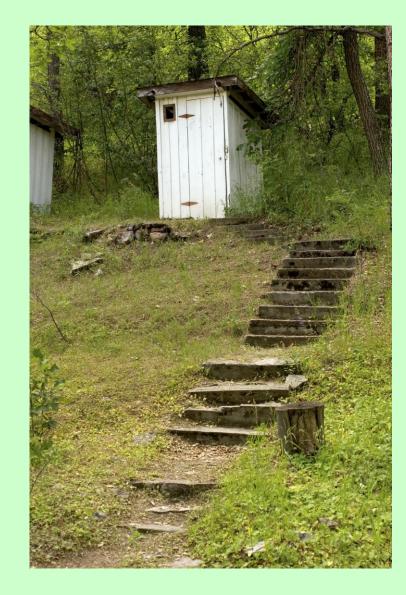
ENVIRONMENTAL SCIENCE AND ENGINEERING

Biochemical Oxygen Demand (BOD)

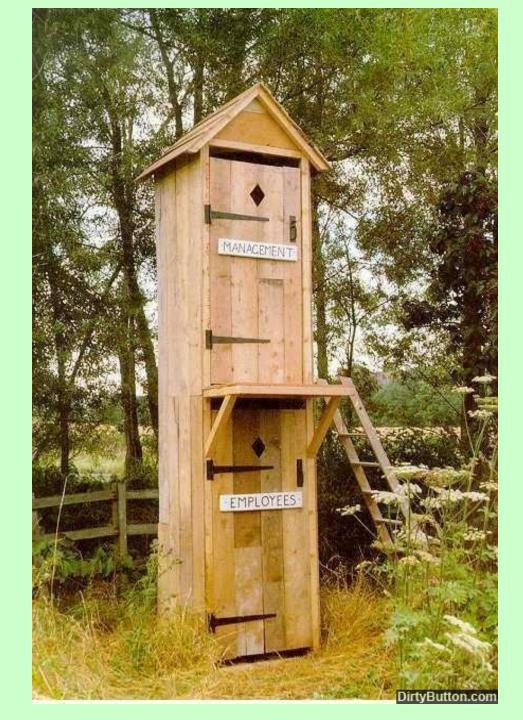
amount of oxygen used to metabolize biodegradable organics

a measure of oxygen required for carbonaceous oxidation of nonspecific mixtures or organic compounds (vs. pure chemical)

end-products are generally CO₂, NH₃, and H₂O

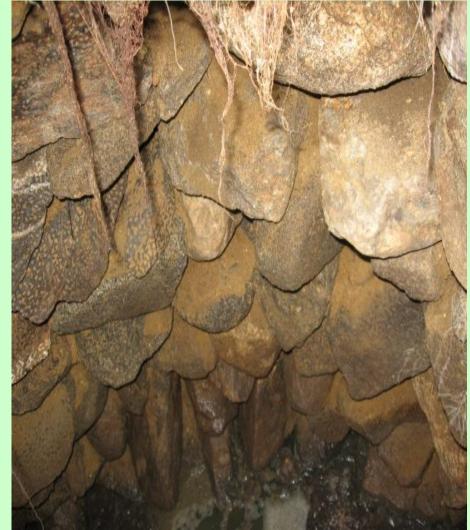

reported BOD values are only for the biodegradation of carbonaceous material; some government agencies require that this be reported as CBOD (carbonaceous biochemical oxygen demand)

BOD Level in mg/liter	Water Quality
1 - 2	Very Good: There will not be much organic matter present in the water supply.
3 - 5	Fair: Moderately Clean
6 - 9	Poor: Somewhat Polluted - Usually indicates that organic matter present and microorganisms are decomposing that waste.
100 or more	Very Poor: Very Polluted - Contains organic matter.


Septic Systems

Outhouse

Commercial Outhouse


• Two Seater

CESS POOLS pre 1970

MATERIALS USED

- CINDER
 BLOCKS
- FIELD STONES
- RAILROAD TIES
- BARRELS

DRYWELLS WILL HAVE A PRIMARY SEPTIC TANK BEFORE DRYWELL

- Precast Concrete Structure 1970's
 - PRECAST CONCRETE
 - CINDER BLOCKS
 - FIELD STONES
 - RAILROAD TIES

Pipe and STONE Leach Beds or Trenches 1970's – 1980's

Chambers

Concrete Chamber or Plastic Chambers 1980's – 1990s

Fabric Base Systems

Early 1990's - present

Alternative Technology

Late 1990's - present

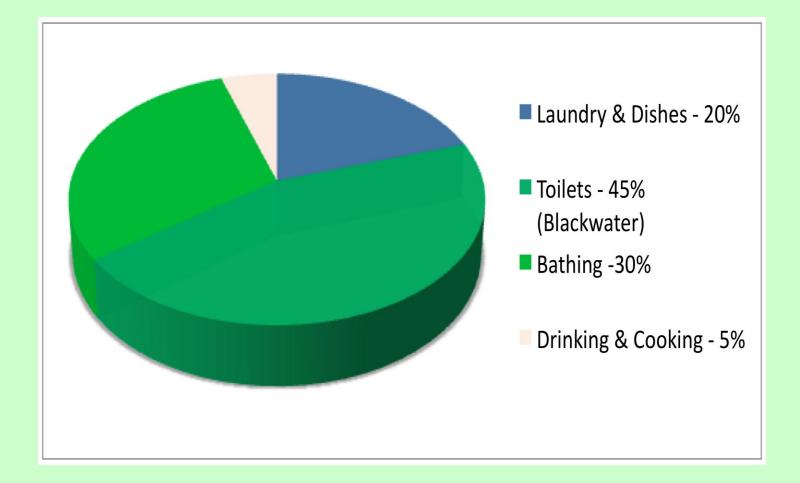
Lawrence Evening Tribune on January 3, 1929.

This advertisement offered a free camp or house lot on Little Island Pond.

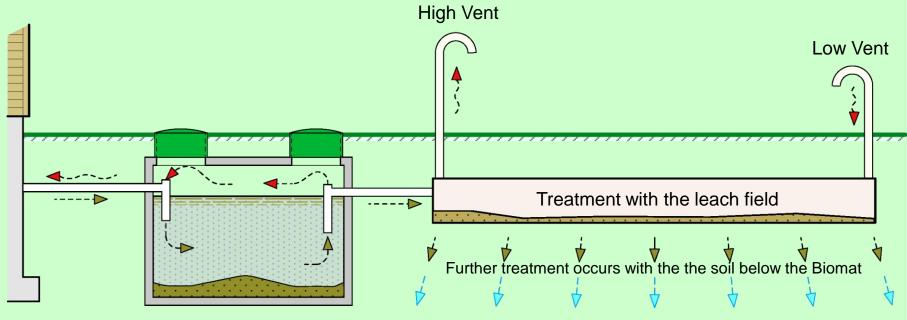
When you purchased three pounds of Monarch Coffee. (Not over 2 lots to a customer.)

ABSORPTION – AREA REQUIREMENTS

From 1968 to February 1976


- 4 bedroom home with 2 min perc. rate required =
340 sq.ft - pipe and stone

LEACHING AREA REQUIREMENTS


From 1976 to present

- 4 bedroom home with 2 min perc. rate required =
750 sq.ft pipe and stone

WATER USE IN A HOME 150 gpd/bedroom – design

CONVENTIONAL LEACH FIELD SEPTIC SYSTEM Treatment occurs within the leach field components

Treated effluent recharges the groundwater

Septic Tank

Solids settle out in an Anaerobic environment – partial treatment

Leach Field

Aerobic treatment occurs along the interface between the leaching component and the sand at the "Biomat" (bacterial film)

Function of a Septic Tank

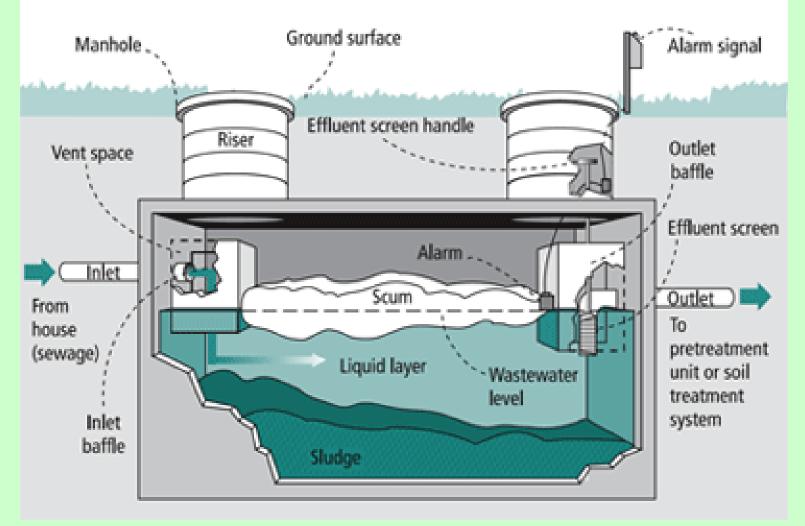


Image from University of Minnesota

WHY MAINTAIN YOUR SYSTEM?

- \$\$\$\$\$\$ to replace a failed system.

- to maintain your system safeguards the health of your family, community, and the environment.
- maintain your septic system to protect a major property invest
- ment.
- Prevents odor problems

SIGNS THE SYSTEM IS FAILED or FAILING

- warning signs of a failing system:
 - Slowly draining sinks and toilets
 - Gurgling sounds in the plumbing
 - Plumbing backups
 - Sewage odors in the house or yard
 - Ground's wet or mushy underfoot
 - Grass growing faster and greener in one particular area of the yard

DOES IT HAVE TO BE A SURFACE FAILURE TO MEET NHDES FAILURE DEFINITION? NO

Existing Effluent Disposal Area (EDA) could be in the Water Table or within 24" of the Seasonal High Water Table

The Do's

- Maintain Records of your Septic System
 - Obtain design plans
 - NHDES Construction Approval
 - NHDES Operational approval
 - Town Approvals (if required)
 - Pumping
 - Repairs
- Know the Location of
 - Septic Tanks and Pump Chambers access
 - Locate edge of leach field
 - Locate distribution box
 - Filters
 - Venting
 - Pump Alarms

The Do's

Have your system inspected <u>not just</u> <u>pumped</u>

- Inspect condition of tank
- Inlet and outlet baffles
- Scum layer
- Sludge layer
- Inspect D-box for signs of flooding
 - Unequal flow
- Inspection into field for signs of flooding
 - Have a couple of observation holes dug

The Do's

- Have it pumped when needed not when there is a problem.
- Conserve water.
 - Fix dripping Faucets- can add 100's gal/day
 - Leaky Toilets can add over 2,500's gal/day
 - Spread Wash Loads out over the week.
 - Replace old dishwashers and washing machines with high efficiency models
 - Replace old toilets and shower heads with low flow
- Install a drywell for water treatment systems

Flush Responsibly

– Don't Flush

- Coffee grounds
- Diapers
- Handi wipes
- Cat litter
- Cigarette buts
- Feminine hygiene products
- Kleenex
- Grease / Oil / Fats

All these items are non-organic and nonbiodegradable

• Garbage disposal – Increase Septic Tank Size 50%

DO'S

- Direct surface water runoff away from the leach bed or access covers to the septic tank
- Keep records of when the system was inspected and pumped
- Bring access covers to grade for easy access and also as a reminder that the tank is there
- Don't drive on the leach bed.
- YOU DON'T NEED SEPTIC TANK ADDITIVES

THE Don'ts

- Flush Household chemicals down drain
- Paints
- Paint thinners
- Use of heavy bleach cleaners
- Use toilets bowl fresheners
- Pesticides
- Unused Medications
- These products will stress a septic tank and destroy anaerobic biological treatment in a septic tank and could contaminate surface or groundwater

When should you pump?

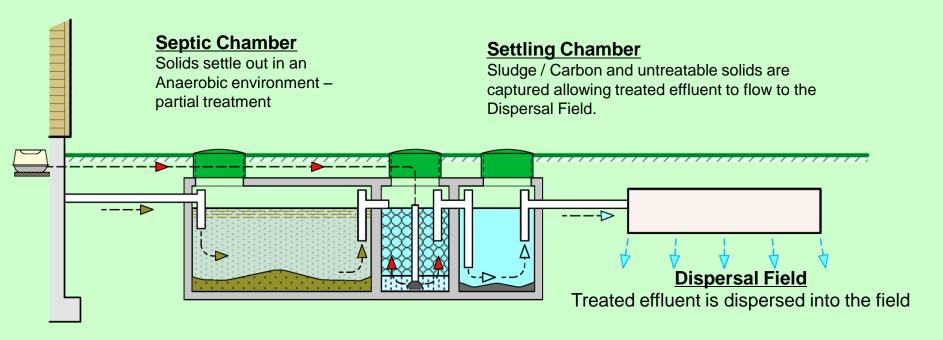
- There is no set time schedule
 - Guideline 1.5 to 3 years
 - NHDES recommends getting your system inspected yearly
 - What will impact the frequency of pumping
 - Garbage disposals
 - High-water use fixtures
 - Number of people living in the home
 - Families with younger children / Teenagers
 - Medications used by occupants

SYSTEM REPLACEMENT

- Your system has failed:
 - Contact a Licensed Septic Designer:
 - Test Pit to verify the adjacent Water Table
 - Conduct an as-built survey of the Site
 - Coordinate with Local Town officials
 - Prepare the State application
 - Five to Ten days for a State Approved Plan
 - Cost for the Approved Plan: \$2,000
 - Installation Time Frame and Cost
 - Actual Installation Time Frame Is only 2-3 days
 - Don't need to Move out
 - Cost ranges from \$8,000 to \$20,000

Innovative Technology For Difficult Sites In NH

Solutions for Decentralized Wastewater Treatment


HIGH GROUNDWATER

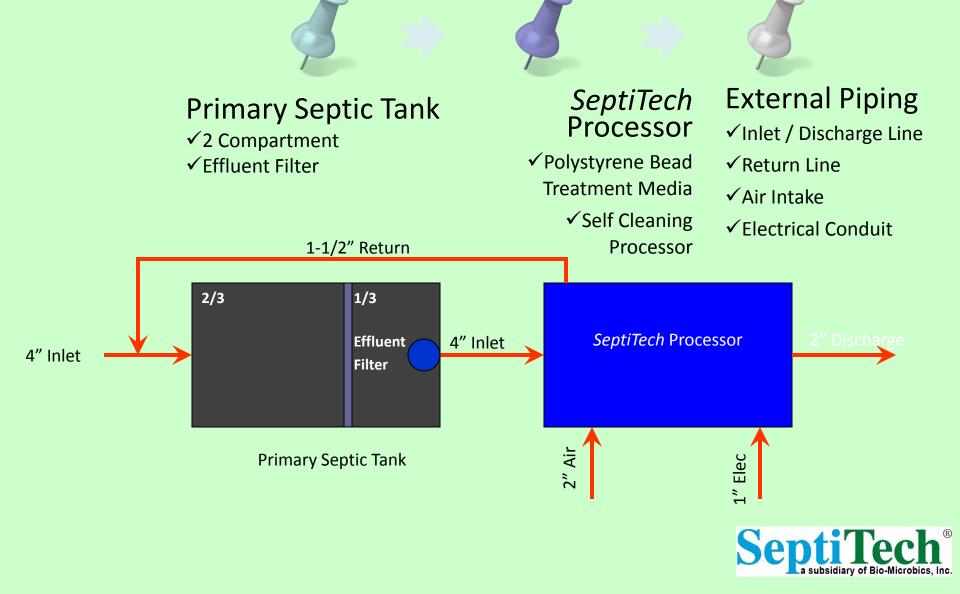
IMPAIRED WATERS AND SENSITIVE AREAS

GROUNDWATER SOURCE PROTECTION

SMALL LOTS OF RECORD

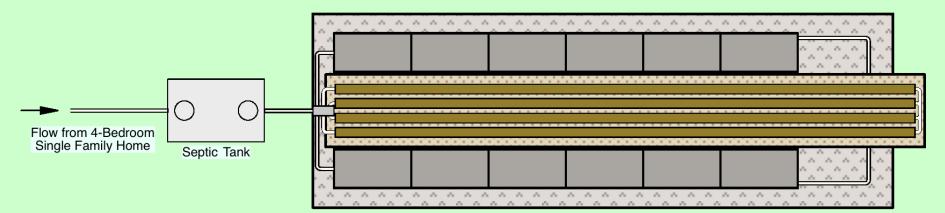
The **CLEAN SOLUTION**TM - Alternative Septic System Treatment occurs within the BioConTM Aerobic treatment chamber

BioCon Chamber


Aerobic treatment occurs within the Biofilm growth on the plastic media. Air is pumped to the chamber by a small compressor providing dissolved oxygen to promote growth of the Biofilm

Orenco AdvanTex® Main Components

- Control panel
- Primary tank
- AdvanTex RT Filter
- Pump System
- Recirc-return valve
- Passive Vent

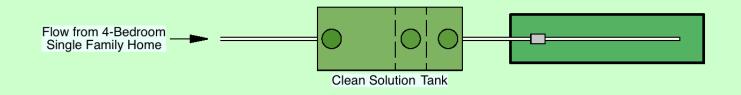


Residential System Overview

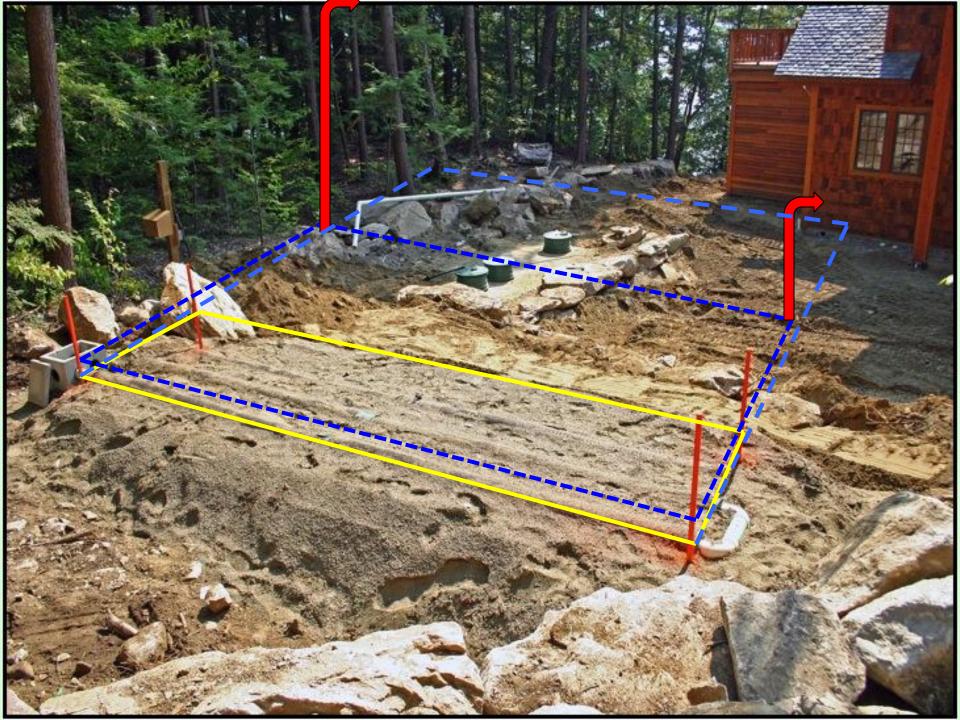
Leach Field vs Dispersal Field

4 - Bedroom Single Family Home with 12 min/in perc. rate

Pipe & Stone Leach Field


1,200 SQ.FT. Req'd (20' x 60')

Chamber Leach Field


768 SQ.FT. Req'd (16' x 48')

Fabric Wrapped Pipe Leach Field

220 L.F. Req'd (7.5' x 62')

Aerobic systems can receive between 75 to 90% reduction

 BOD₅ - range 160 to 210 mg/l
 BOD₅ - range 2.5 to 8 mg/l

 TSS - range 230 to 270 mg/l
 TSS - range 0 to 2.5 mg/l

 Percent reduction 96 to 99%

Highly Treated Effluent Protects System Sand

Clean System Sand Surrounding Advanced Enviro-Septic[®] After 5 Years in Use

Side View of the First Row on a Serial System in Indiana

Treated Effluent Leaving an AES Test Site in New Zealand

Presby NSF Test Results

(2013 Mass Alt. Septic System Test Center – MASSTC)

Parameter Measured	Average Influent Strength	Average Effluent Strength	NSF 40 Class 1 Standard	Reduction
BOD ₅	176 mg/L	11 mg/L	<25 mg/L	94%
TSS	206 mg/L	7 mg/L	<30 mg/L	97%
Escherichia coli (E.coli)	4,128,571 CFU/100 mL	168,856 CFU/100 mL	N/A	96%

- 6" of System Sand below all Presby pipes
- Field loaded at 100% of daily design flow (450 GPD)

SEPTIC SYSTEMS PROTECT THE PARSONS CREEK WATERSHED AND GROUNDWATER

FUTURE GENERATIONS

FOR

85 Portsmouth Avenue, PO Box 219, Stratham, NH 03885 603.772.4746 - JonesandBeach.com

Thank You

Christopher Albert calbert@jonesandbeach.com

